Modeling land change using one or two time points based calibration

A comparison of factors

María Teresa Camacho Olmedo

Departamento de Análisis Geográfico Regional y Geografía Física, Universidad de Granada, Spain camacho@ugr.es
Context

➢ Previous research and published papers based on:
 • The methodological comparison of pattern-based models
 • The accuracy assessment of land change models
 • **One or two time points based models**: suitability *versus* transition potential, their hard outputs assessment, etc.

Introduction

• Changes over time and space are considered differently in models
• A land change model can be calibrated with the state at **one time point** or with the difference **between two time points**
• These approaches involve modeling **LUC states** or **LUC transitions**
• In calibration stage, factors can be created with or without the LUC locations as **reference maps**
Objective

Comparing

- One / two time points based calibration
- Both for two consecutive calibration periods

We obtained and compared factors in order to answer

- how the choice of LUC reference maps influences the factors?
- how these factors represent the change patterns in the two calibration based models and in the two calibration periods?
- how the behavior is specific to the different LUC categories or variables?
Study area and data sets

• 2,300 square kilometers in the province of Murcia (Southern Spain).

• 11 explanatory variables: topographic variables, protected areas, territorial accessibility (roads diversity and quality), distance to roads and distance to hydrographic network.

• 3 Corine Land Cover maps (CoORdination of INformation of the Environment, Instituto Geográfico Nacional, Spain) for dates 1990, 2000, 2006 and for 4 LUC categories.
Software

- TerrSet software (Clark Labs, 2016)

Methods

- Calibration based models and periods

 One / two time points based calibration
 Both for two consecutive calibration periods

- Obtaining factors by evidence likelihood transformation

 Relative frequency of categories of **variables**

- Comparing factors by Pearson correlation index

Reference maps (binary LUC category/transitions)

4 factors

4 combinations
Obtaining factors

<table>
<thead>
<tr>
<th>Reference maps (binary LUC category/transitions)</th>
<th>First calibration period</th>
<th>Second calibration period</th>
</tr>
</thead>
<tbody>
<tr>
<td>One time point</td>
<td>2000 (t_1)</td>
<td>2006 (t_2)</td>
</tr>
<tr>
<td>LUC state</td>
<td></td>
<td>LUC state</td>
</tr>
<tr>
<td>Two time points</td>
<td>1990 (t_0) – 2000 (t_1)</td>
<td>2000 (t_1) – 2006 (t_2)</td>
</tr>
<tr>
<td>LUC transitions</td>
<td></td>
<td>LUC transitions</td>
</tr>
</tbody>
</table>

4 combinations
4 LUC
up to 11 variables
= 96 factors

for 4 LUC categories/transitions
Obtaining factors

Example of irrigated crops LUC category / transitions

4 factors for 9 variables
Example of elevation (front) and slope (behind)

Modeling land change using one or two time points based calibration

A comparison of factors

María Teresa Camacho Olmedo

GAMOLCS 2017 SIEGOMOD_2020 BIA2013-43462-P
Comparing factors Pearson correlation index

4 combinations

<table>
<thead>
<tr>
<th>Reference maps (binary LUC category/transition)</th>
<th>First calibration period</th>
<th>Second calibration period</th>
</tr>
</thead>
<tbody>
<tr>
<td>One time point</td>
<td>2000 (t_1)</td>
<td>2006 (t_2)</td>
</tr>
<tr>
<td></td>
<td>LUC state</td>
<td>LUC state</td>
</tr>
<tr>
<td>Two time points</td>
<td>1990 (t_0) – 2000 (t_1)</td>
<td>2000 (t_1) – 2006 (t_2)</td>
</tr>
<tr>
<td></td>
<td>LUC transitions</td>
<td>LUC transitions</td>
</tr>
</tbody>
</table>
Comparing factors

<table>
<thead>
<tr>
<th>Urban</th>
<th>Natural</th>
<th>Irrigated</th>
<th>Rainfed</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>e</td>
<td>f</td>
<td>g</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>b</td>
<td>d</td>
</tr>
</tbody>
</table>

By LUC / variables

<table>
<thead>
<tr>
<th>One time point</th>
<th>Two time points</th>
<th>First calibration period</th>
<th>Second calibration period</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elevation
Slope
Aspect
Distance to secondary dirt road
Distance to principal irrigation channel

By variables / LUC

<table>
<thead>
<tr>
<th>One time point</th>
<th>Two time points</th>
<th>First calibration period</th>
<th>Second calibration period</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Modeling land change using one or two time points based calibration

A comparison of factors

María Teresa Camacho Olmedo

GAMOLCS 2017 SIGEOMOD_2020 BIA2013-43462-P
Comparing reference maps surfaces

Surface area (ha) of reference maps for the different LUC categories
Conclusions

• The **one time point based calibration**, “total past trend”, involve modeling LUC states, that include all past changes. It is more likely to capture historic patterns of change and simulations over longer time. It could be accurate at modeling categories in which transitions affect a proportionally small area.

• The **two time point based calibration**, ”two past trend”, involve modeling LUC transitions, that considers past changes that occurred during a recent period. It is more likely to capture these recent patterns of change and simulation over shorter periods. It could be statistically representative when they correspond to a proportionally larger area.

• Depending on multiple parameters, including form and intensity of dynamics, the two approaches may be complementary.

• A multi-temporal approach, integrating data about more than two training dates, could resolve potential errors resulting from only considering two past dates or by considering the total past.
References

✓ NRC, 2013. *Advancing Land Change Modeling: Opportunities and Research Requirements*. Committee on Needs and Research Requirements for Land Change, Modeling; Geographical Sciences Committee; Board on Earth Sciences, and Resources; Division on Earth and Life Studies, National Research Council, Washington, USA.
Modeling land change using one or two time points based calibration

A comparison of factors

María Teresa Camacho Olmedo

GAMOLCS 2017 SIGEOMOD_2020 BIA2013-43462-P

ACKNOWLEDGEMENTS

Research Project SIGEOMOD_2020 BIA2013-43462-P (2014-2017), funded by the Spanish Ministry of Economy and Competitiveness and by the Regional European Fund FEDER

http://geofireg.ugr.es/sigeomod/

María Teresa Camacho Olmedo

Departamento de Análisis Geográfico Regional y Geografía Física, Universidad de Granada, Spain camacho@ugr.es