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ABSTRACT 
 
Land use/cover changes (LUCC) are significant to a range of issues central to the study of global environmental 
change. Over the last decades, a variety of models of LUCC have been developed to predict the location and patterns 
of land use/cover dynamics. The simulation procedures of most computational LUCC models can be sub-divided 
into three basic steps, 1) a non-spatial procedure which calculates the quantity of each transition, 2) a spatial 
procedure which allocates changes to the more likely locations and eventually replicates the patterns of the 
landscape and, 3) an evaluation procedure which compares a simulated land use/cover map with the true map of the 
same date.  However, most of the evaluation techniques are focused in assessing the location of the simulated 
changes in comparison with the true changes and do not assess the ability of the model to simulate the landscape 
patterns (e.g. size, shape and distribution of patches).  This study aims at evaluating simulated land use/cover maps 
obtained by two models (DINAMICA and Land Change Modeler). Simulated maps were evaluated using a fuzzy 
similarity index which takes into account the fuzziness of location within a cell neighborhood and fragmentation 
indices. Results show that more realistic simulated landscapes are often obtained at the expense of the location 
coincidence. When patterns of landscape are important (e.g. when considering fragmentation effects on 
biodiversity), it is important to incorporate indices that take into account the spatial patterns, and not merely  
location, during the model assessment procedure. 

 
 

INTRODUCTION 
 

Land use/cover change (LUCC), especially the conversion of forested areas into other uses, has been identified 
as a contributing factor to climate change, accounting for 33 percent of the increase in atmospheric CO2 since 1850, 
and is a leading factor in the loss of biological diversity (de Sherbinin, 2002). Over the last decades, a range of 
“spatially explicit” computational models of LUCC have been developed and represent an important suite of 
techniques for the projection of alternative scenarios into the future, for conducting experiments that test our 
understanding of key processes, and for describing the latter in quantitative terms (Veldkamp and Lambin, 2001; 
Xiang and Clarke, 2003). Among these models, process-based models, closely related with geographic information 
systems, view land use and cover changes as transition process from one state to other states. Typical examples are 
models based on cellular automata and Markov process models, such as the two models used in the present study. 
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MATERIAL 
 

For LUCC modeling, the programs DINAMICA EGO (version 1.4.0) and Land Change Modeler in IDRISI 
(version 16.05) were used. DINAMICA EGO is a cellular automata-based model which has been applied in a variety 
of studies, including modeling tropical deforestation from local to basin-wide scales (Soares-Filho et al., 2002, 2006, 
Cuevas and Mas, 2008; Texeira et al., 2009) and urban growth and dynamics (Almeida et al., 2003; Godoy and 
Soares-Filho, 2008). Land Change Modeler (available in IDRISI) provides tools for the assessment and projection of 
land cover change, and their implications for species habitat and biodiversity (Eastman, 2006; Václavík and Rogan, 
in press; Gontier et al., 2009). Statistical analysis and graphs were created using R (R Development Core Team, 
2009). 

Modeling was carried out using the data set supplied with the IDRISI tutorial, developed by the Conservation 
International’s Center for Applied Biodiversity Science at the Museo Noel Kempff Mercado in Bolivia. The data set 
consists of land cover (LC) maps and ancillary information from a rapidly changing area in the Bolivian lowlands. 
The study area is about 200 km to the north/northwest of Santa Cruz de la Sierra. This is a region of rolling hills at 
the ecotone between the Amazonian forest and deciduous dryland tropical forest. It is not well suited to mechanized 
agriculture, but has economic value for both cattle and timber production (Eastman, 2009.) 

The data used in the present study are the LC maps of 1986 and 1994 and several maps used as explanatory 
variables (maps of distance from urban areas, distance from roads, slope, distance from disturbance, elevation). As 
the LC maps were intended for ecosystem monitoring, they do not distinguish between settlements and agriculture, 
both included in the category of anthropogenic disturbance. This also includes secondary forest – once disturbed, 
land remains in that class. The vast majority of disturbed areas are used for pasture – either for dairy (primarily in 
the south east) or for beef production (Eastman, 2009). 

 
 

METHODS 
 
The present research has two-fold goals: 1) creation of modeled LC maps using the two programs; and 2) the 

assessment of these maps using two approaches: a) based on the spatial coincidence; and b) landscape metrics. 
 

LUCC Modeling 
LUCC are modeled empirically by using past change to develop a mathematical model; and GIS data layers 

influence the transition potential. First the model is calibrated using a map of LUCC obtained through the 
comparison of LC maps at two different dates (1986 and 1994 in the present case). A non spatial procedure 
calculates the quantity of each type of change and a spatial analysis allows the identification of more likely change 
locations using a set of explanatory variables (typically slope, elevation, distance to roads, distance to human 
settlements, or previous change). The result is a change susceptibility map for each transition. From these maps, two 
outputs can be obtained: 1) a map of susceptibility to change for the selected set of transitions and; 2) a LC map for 
a future date. The present study is focused on the elaboration and assessment of the LC map. In order to create the 
simulated LC map a cellular automata procedure replicates the pattern of the landscape.  

Finally, an assessment procedure allows comparing the simulated map with the true map at the posterior date. In 
the present study, as we are interested in assessing landscape pattern simulation rather than predictive performance, 
we simulated a 1994 LC map from the model calibrated over the period 1986-94 (e.g. simulation and calibration 
period are the same). In the following paragraphs, the calibration and modeling procedures are described more 
precisely.  

Quantity of change estimate. The changes were computed from a Markov matrix obtained through the 
comparison of LC maps of two previous dates, which is the standard procedure in DINAMICA and LCM, although 
both programs allow using a quantity of change provided by an external model. 

Potential for change. Based upon the relationship between the different transitions and the explanatory 
variables, maps of change susceptibility are produced for each transition. In order to establish this relationship, 
DINAMICA and LCM use the weights-of-evidence method and an artificial neural network (ANN) respectively. In 
the present study, the DINAMICA model uses the map of probability elaborated by the LCM in order to obtain 
comparable results. 

Reproduction of spatial patterns. DINAMICA and IDRISI use a cellular automata approach in order to obtain a 
proximity effect (areas which are close to existing areas of a certain class are more likely to change to this class) and 
eventually simulate landscape pattern.  
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In IDRISI, the process involves a 3x3 filter which traverses the image and reclassifies pixels to incorporate the 
effects of neighboring pixels on a current pixel value. There is no option to control the CA behavior. 

DINAMICA uses two complementary transition functions: 1) the Expander; and 2) the Patcher. The first 
process is dedicated only to the expansion or contraction of previous patches of a certain class. The second process 
is designed to generate new patches through a seeding mechanism. The combination of DINAMICA's transition 
function presents numerous possibilities with respect to the generation of spatial patterns of change. The user can set 
parameters to control the size and shape of the simulated patches, such as mean patch size, patch size variance, and 
isometry. Increasing patch size leads to model with a less fragmented landscape, increasing patch size variance to a 
more diverse landscape, and setting isometry greater than one leads to the creation of more isometric patches. 
Additionally, a prune factor multiplies the expected number of cells, based on their spatial probability, that take part 
in the selection mechanism of new patch nuclei. Therefore, increasing the prune factor allows simulated changes to 
occur in less likely areas. 

Model assessment. The evaluation of the LC prospective map was based on the comparison between the 
simulated and the observed (true) map. Paegelow and Camacho Olmedo (2005) pointed out that modeled LC maps 
can be very close to reality due to the persistence of LC over time. The comparison was therefore focused on change 
areas (both observed and simulated changes). This comparison was done using two approaches: a) the spatial 
coincidence between modeled and true change; and, b) the spatial pattern of modeled and true change patches. 

In order to assess the spatial coincidence between simulated and true changes, we used the method implemented 
in DINAMICA. The fuzzy similarity test is based on the concept of fuzziness of location, in which a representation 
of a cell is influenced by the cell itself and by the cells in its neighborhood (Hagen 2003). Two-way comparison was 
conducted, applying the fuzziness to the simulated and the true maps of change in turn. As random maps tend to 
score higher, we picked up the minimum fit value from the two-way comparison. 

In order to assess the spatial configuration of simulated and true changes, we calculated, for each transition, the 
amount of change with respect to the map of change probability. For this, a map of susceptibility categories was first 
obtained by reclassifying susceptibility maps into 10 categories and overlaid with the maps of changes. Additionally, 
some metrics used to characterize landscape such as the number and the size of the patches (mean and standard 
deviation) and total edge (mean and standard deviation) were computed. 

 
 

RESULTS 
 

LUCC modeling 
During 1986-94, the main LUCC processes in the study area were the conversion of deciduous mature forest, 

savanna, amazonian mature forest and woodland savanna to anthropogenic disturbance (Table 1). Only these 4 
principal transitions were modeled using as explanatory variables the distance from 1986 urban areas, the distance 
from roads, the slope, the distance from 1986 disturbance, the elevation and a map created by determining the 
relative frequency with which different LC categories occurred within the areas that transitioned from 1986 to 1994. 
The values thus express the likelihood of finding the LC at the pixel in question if this were an area that would 
transition.  

 
Table 1. Principal Transitions during 1986-94 

 
Acronym From-to transition category Area (ha) 

Transition 1 Woodland savanna to anthropogenic disturbance 1,897 
Transition 2 Amazonian mature forest to anthropogenic disturbance 3,200 
Transition 3 Savanna to anthropogenic disturbance 11,378 
Transition 4 Deciduous mature forest to anthropogenic disturbance 19,699 

 
Figure 1 shows the map of change susceptibility obtained by the neural network for each one of the four 

transitions. These maps and the 1986-94 transition matrix were used by both models to build the 1994 simulated LC 
map. In the case of DINAMICA, various settings of prune factors, patch sizes and isometry was tested. Table 2 
shows the parameters which gave the better results.  
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Figure 1. Maps of change susceptibility. 
 
 

Table 2. DINAMICA Parcher and Expander parameters 
 

Acronym Expander           Prune = 5 
Mean / variance / isometry 

Parcher           Prune = 8 
Mean / variance / isometry 

Transition 1 2 / 40 / 2 2.5 / 40 / 2 
Transition 2 4 / 60 / 2 2.5 / 50 / 2 
Transition 3 4 / 90 / 2 3 / 70 / 2 
Transition 4 9 / 60 / 2 10 / 60 / 2 
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Figure 2. Modeled LC maps by DINAMICA and LCM. 
 

Model Assessment 
Figure 3 shows that without fuzzy tolerance (the case corresponding to a “hard” per pixel comparison) and with 

little tolerance (fuzzy tolerance distance < 1000 m) the coincidence between the true changes and the changes 
modeled by LCM is much higher than with DINAMICA. This result was expected as LCM tends to collocate 
simulated changes only in the areas with higher change susceptibility. A comparison between the LCM modeled 
map and a map obtained by simply thresholding the transition susceptibility maps to the correct quantity of change 
indicates that 91% of the change pixels coincide in both maps. Since DINAMICA makes an attempt to create 
patches and simulates change in less likely areas (if the prune factor value is set high), the coincidence between the 
true and simulated changes is likely to be lower. However, with higher fuzzy tolerance values, DINAMICA presents 
a higher score because it has some (fuzzy) coincidence of simulated patches located in less likely areas. This does 
not occur with LCM that restricts the simulated change to the more susceptible areas only. Therefore, DINAMICA 
presents a better coincidence “as a broad picture” whereas LCM exhibits a better coincidence on a per-pixel 
comparison or with little fuzzy tolerance. 
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Figure 3. Fuzzy similarity as a function of distance tolerance. 
 

  
 

Figure 4. Means and standard deviations of patch sizes and patch edge lengths for each transition. 
 
 Figure 4 shows that with DINAMICA it was possible to 

obtain for each transition simulated patches of change which 
present broadly the same size as true patches of change. In the 
case of LCM, the simulation produced some very large patches 
corresponding to the higher susceptibility areas, resulting in 
larger values for the mean and the standard deviation of patch 
size. A similar pattern can be observed for patch edge lengths. 
However, there are fewer patches on the true change map than 
on either of the simulated change maps. The map modeled with 
LCM has 47% fewer patches than the true map (Table 3). 

 

Transition True 
changes 

LCM DINAMICA 

Transition 1 332 192 204 
Transition 2 326 190 208 
Transition 3 666 299 615 
Transition 4 1017 547 804 

Table 3. Number of patches for each 
transitions in the true and modeled maps 
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Figure 5 shows that true changes do not occur only in more susceptible areas and that this tendency depends on 
the transition. Transition 1 occurred mainly in the more susceptible area whereas transition 2 is frequent even in 
areas with medium susceptibility. The changes simulated by LCM are limited to the areas with higher susceptibility. 
The setting of the prune factor allowed DINAMICA to generate a map with a distribution of change closer to the 
observed change. 

 
 

 

 

 
 

Figure 5. Distribution of change in categories of change susceptibility. Top figure is true changes,  
middle is change simulated by LCM and bottom simulated by DINAMICA. Categories 1 to 10 represent  

areas with increasing susceptibility to change. 
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DISCUSSION AND CONCLUSION 
 

Due to the more sophisticated approach offered by DINAMICA, it was possible to generate more realistic 
prospective LC maps with respect to landscape pattern. However, the setting of the parameters which control the 
cellular automata is not a straight forward process because their action depends also on the different susceptibility 
maps and on the landscape pattern on the previous LC map. The model we developed could have been improved for 
example by using cellular automata for each transition, and allowing the setting of a prune factor for each transition. 

The best manner of producing a prospective LC map, where simulated changes fit better with the true changes, 
is by thresholding the susceptibility map, because the majority of the changes occur in the more likely locations 
(with the exception of cases in which the pattern of changes during the calibration and the simulation periods is 
radically different). The realism of the landscape pattern in the prospective LC map is obtained at the expense of the 
accuracy of the locations of the change. This is particularly obvious when models simulate the occurrence of 
changes in unlikely areas. For example, SLEUTH's urban growth model recognizes the possibility of change that 
occurs without any spatial logic, allowing a small amount of change at randomly assigned locations. The prune 
factor in DINAMICA also allows the occurring of change in less likely areas, or if the prune factor is set to the 
maximum value, in random areas. Although such simulations do not generate LC maps with accurate spatial 
allocation, they can provide valuable information. 

Depending on the objective of the modeling, different qualities of prospective maps can be critical. When 
modeling aims at identifying areas with more propensity to change, it seems logical to look for the best fit between 
modeled and true changes. However, in this case a fuzzy map that expresses the degree to which locations might 
potentially change in the future is probably a better option. When modeling aims at producing LC maps that can 
represent a possible future given a certain scenario, the accuracy of the spatial allocation of change is not necessarily 
a critical issue. For example, in the assessment of LUCC on biodiversity, it can be important to know that 
homogeneous forest areas will be perforated by small agriculture fields although the exact location of the fields 
remain unknown. 

However, the common procedures of assessment of prospective LC map are based upon the spatial coincidence 
of the simulated map and a “true” observed map. Although fuzzy assessment as used in this study provides 
interesting information, they do not evaluate the landscape pattern. 

Therefore, the modeling and the assessment procedures have to be adapted to the critical feature the model has 
to achieve. When landscape pattern is an important feature, the computing of landscape metrics can provide valuable 
insights to evaluate the model performance. 
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